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The concept of squeezing has so far been applied mainly to light, as is evidenced by numerous

research works on the subject of squeezed light. Since in quantum mechanics both light and the

simple harmonic oscillator are described within the same mathematical framework, there is of

course no difficulty in applying the concept to the simple harmonic oscillator as well. In fact,

theoretical development of squeezed states and squeezed light owes much to physical insights

one obtains as the analogy between light and the harmonic oscillator is exploited [1, 2]. There,

however, exist only a few publications [3, 4, 5] that deal directly with generation of squeezing

in a harmonic oscillator. Since the two quadrature operators for a simple harmonic oscillator

carry the physical meaning of position and momentum operators apart from constants, a squeezed

oscillator, i.e., a simple harmonic oscillator in a squeezed state, exhibits squeezing in actual position

or momentum. Thus, a squeezed oscillator once generated can play an important role in atomic

or molecular experiments that require precise initial determination of the position or momentum

of the particles involved.

In our previous work [5], it was shown that squeezing can be generated in a harmonic oscillator

by subjecting it to collisional interaction. The model chosen for this study is one-dimensional

collision between a helium atom, taken as a structureless particle, and a hydrogen molecule,

approximated as a simple harmonic oscillator. The harmonic oscillator was assumed to be prepared

in its ground state before the collision. Thus,

I¢(t = 0) >= 10 >, (1)

and the initial quadrature variances are given by

1

(Ax1) _ = (LxX_)_ = _. (2)

As the collision proceeds, the oscillator develops into a superposition state,

l¢(t) >= _ a.(Ol_ >= _ la-(t)le'¢"(')l" >. (3)
n

The quadrature variances at time t are then given by [6]

1 1

(AX,) 2 = _ + _ nla.I 2+ _ __, _vq + lla.lla.+21cos(¢.+2 - ¢.)

- [__, vq + lla.lla.+,lcos(C.+a - ¢.)12, (4)
?l
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and a similar expression for (AX2) _. Wodkiewicz et. al. [7] have shown that a superposition state

consisting of a finite number of eigenstates In > can exhibit squeezing for appropriate values of

the magnitudes ]anl and phases ¢, of probability amplitudes, and thus there is a possibility of

squeezing in the collision state given by Eq.(3). Our calculations, as reported earlier [5], show

that there occurs a relatively strong squeezing near the time of minimum separation and a weak

squeezing altanately in position and momentum after the collision is over.

It should be noted that, in most of the collision studies in the past, attention was focused on

the magnitudes la, I of the probability amplitudes as they yield the transition probabilities. For

our study of collision-induced squeezing, however, the question of how the phases develop in time

as the collision proceeds is also an important issue, because the variances (AXa) 2 and (AX2) 2

depend not only on the magnitudes lanl but also on the phases ¢,, as can be seen from Eq.(4).

Even if the magnitudes lan I are fixed, the variances can take on different values for different phases

In order to emphasize the importance of the phases, we show below that squeezing can be

achieved from a coherent state simply by changing the phases alone. Let us consider a harmonic

oscillator in a coherent state la > at time t = 0. If we let the oscillator develop freely in time, its

state at time t is given by

O n

m -_._' > (5)I¢(0 >= e-1ol'/2_ v_e I- •
n

The variances (AX1) 2 and (AX2) 2 remain ¼ throughout. Let us now assume that the phases of

the coherent state are changed at time t = 0 so that the oscillator develops in time according to

t¢(0 >= e-Iol'/_Z: . "" -'_' > • (6):.,_ e I"
n

As compared with the coherent state, Eq(5), the state represented by Eq.(6) has additional con-

stant phase factors 0,,. Althogh this state is not identical with the coherent state, it has the
same Poissonian state distribution as the coherent state and may thus be called a "quasi-coherent

state". It is our purpose to show that, with appropriate values of On, the quasi-coherent state can

show squeezing in XI or X2. To illustrate this, let

0, = _" 0, if n is even,
" if n is odd. (7)

l -7

The state represented by Eqs. (6) and (7) are a linear combination of even and odd coherent states

[8] with the relative phase between the even and odd states given by _. The variance (AX1)2 for

this state can easily be computed using Eq.(4), and similarly (AX2) 2. The result of the calculation

is

(AX1)2 1= _-+ Io,I2-I,_12sin2(¢-wt)- Ic,12e-*l"l_sinZ(¢- wt),
' 1
(AXz)2 = 4 + i,_12_ i,_12cos2(¢ _ wt) - Ic,I2e-'1°1_ cos2(¢ - wt).

The variances oscillate between vm_x and v... where,

1 1 _ lal2e_41ol,,_ = _ + Iols, v.,. =

(8)

(9)

(10)
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It is evident that the quasi-coherent state with the phases given by Eq.(7) exhibits squeezing

because vmin < ¼.

The example presented above shows clearly that two states with different phases in general have

different degrees of squeezing, even if they have the same state distribution. This means that, even

if one considers collision processes that produce the same state distribution, the degree of squeezing

obtained during and after the collisions can be quite different, depending on how the phases _b,, of

the probability amplitudes develop in time as the collisions proceed. It is therefore evident that,

for a detailed study of collision-induced squeezing, further study on the time development of the

phases in collisions and its relation to collision parameters such as potential energy surfaces and

collision energy is needed.
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